| 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 0 | |-------------------------------|-----------------------------|--------------------------------|-------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|-------------------------------|----------------------------------|---------------------------|-----------------------------------|------------------|------------------|------------------|------------------------|--------------------|--------------------|------------------------| | | | | | Key | | | 1
H
hydrogen
1 | | | | | | | | | | 4
He
helium
2 | | 7
Li | 9
Be | | | ve atomi
omic sy | | | | | | | | 11
B | 12
C | 14
N | 16
O | 19
F | 20
Ne | | lithium
3 | beryllium
4 | | atomic | name
(proton |) numbe | r | | | | | | boron
5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | 23
Na | 24
Mg | | | | | _ | | | | | | 27
Al | 28
Si | 31
P | 32
S | 35.5
CI | 40
Ar | | sodium
11 | magnesium
12 | | | | | | | | | | | aluminium
13 | silicon
14 | phosphorus
15 | sulfur
16 | chlorine
17 | argon
18 | | 39
K | 40
Ca | 45
Sc | 48
Ti | 51
V | 52
C r | 55
Mn | 56
Fe | 59
Co | 59
Ni | 63.5
Cu | 65
Zn | 70
Ga | 73
Ge | 75
As | 79
Se | 80
Br | 84
Kr | | potassium
19 | calcium
20 | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | 85
Rb | 88
S r | 89
Y | 91
Zr | 93
Nb | 96
Mo | [98]
Tc | 101
Ru | 103
Rh | 106
Pd | 108
Ag | 112
Cd | 115
In | 119
Sn | 122
Sb | 128
Te | 127
I | 131
Xe | | rubidium
37 | strontium
38 | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium 43 | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | tin
50 | antimony
51 | tellurium
52 | iodine
53 | xenon
54 | | 133
Cs | 137
Ba | 139
La * | 178
Hf | 181
Ta | 184
W | 186
Re | 190
Os | 192
Ir | 195
Pt | 197
Au | 201
Hg | 204
TI | 207
Pb | 209
Bi | [209]
Po | [210]
At | [222]
Rn | | caesium 55 | barium
56 | lanthanum 57 | hafnium
72 | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | gold
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | [223]
Fr
francium
87 | [226]
Ra
radium
88 | [227]
Ac*
actinium
89 | [261]
Rf
rutherfordium
104 | [262]
Db
dubnium
105 | [266]
Sg
seaborgium
106 | [264]
Bh
bohrium
107 | [277]
Hs
hassium
108 | [268]
Mt
meitnerium
109 | [271] Ds darmstadtium 110 | [272]
Rg
roentgenium
111 | Eleme | | | numbers
not fully a | | | been | $^{^{\}star}$ The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted. Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number. | AQA C7a Crude Oil | | | | | Properties of hydrocarbons | | | | | | | | | |--|---|---|-----------------------------------|---|--|---|---|---|---------------------|---|---|--|---| | COMBIN | ED FC | UNDATION | | | | Combus | | | | complete combustion of hydrocarbons, the carbon and | | | | | Crude oil, hydrocarbons and alkanes | | | | | | hydrogen in the fuels are oxidised, releasing carbon did
and energy. | | | rbon dioxide, water | | | | | | Crude oil | buried in t | | | | nly of plankton to
oud, crude oil is t
nass. | | | | | | | ter + energy | | | Hydrocarbo | ns | They are made of hydro
only. These make up th
the compounds in crud | e majority of | Most of these hydrocarbons are calle alkanes. | | e called | | Boiling point (temperature at which liquid boils) | | ature at | As the hydrocarbon chain length increases, boiling point increases. | | length increases, | | General form | nula for | C _n H _{2n+2} | | For example:
C ₂ H ₆
C ₆ H ₁₄ | C₂H ₆ | | (1 | Viscosity
(how easily it flows) | | As the hydrocarbon chain length increases, viscosity increases. | | | | | | | | _ н | ^C 6 ¹¹ 14 H H | 1 | | | lammability
how easily it | | | As the hydrocarbon chain length increases, flammability decreases. | | length increases, | | Displa
alkane | - | ula for the first four | H-C-H
H
Methane (CH | H-C-C
H H | ;—н
н | 1 | 20 °C | Butane
& Propa | ne | Fractiona
petroche | al distillation and | | | | Cracking a | and Alken | ies | и и и | 4, | . 2 0 | | | Petrol | | | Hydr | ocarbo | on chains | | Decane → pentane + propene + ethane H-C-C-H H-C-C-H H-C-C-H | | | H H H
H-C-C-C
H H H | С — Н — — — — — — — — — — — — — — — — — | | | Kerosene Boilin | | iling point | | In oil | | | | | | | C ₄ H ₁₀) | I ₁₀) 300°C The b
depe | | pends on it | ng point of the chain on its length. During crude oil come in lots of | | oil come in lots of | | | | | | Alkanes to alkenes | 0 | | | es. | fractional distillation, they boil and separate at different temperatures due to this. | | | | ent lengths. | | | | | | Alkenes | | re hydrocarbons with a do
uring the cracking process) | | are | 6 | | 00 °C | (You do <u>ne</u> | ot need to | remember | | 1 | | | Properties of alkenes | bromine v | re more reactive that alkar
water. Bromine water char | nges from orange | 1 | The oil is heated in a Lubricating oil, | | | | | | | | | | - " | | in the presence of alkene | <u> </u> | | | mace | L | Parrafin V
Asphalt | | | | | | | Cracking | | king down of long chain
bons into smaller chains | Cracking can be | ins are more usef
done by various
g and steam crac | methods includ | | Frac | ctions | | | ocarbons in crude
e split into fractior | s mo | ch fraction contains
blecules with a similar | | Catalytic cracking | | | | | ot catalyst | | | | | | in t | mber of carbon atoms
them. The process
ed to do this is called | | | Steam
cracking | racking heated until vaporised heated to a very high temper | | high temperatu | | | | | | s can be processed | We | ctional distillation. | | | | Polymers | and detergents. | | d as the starting cohol, plastics | | | frac | ctions | | | ce fuels and
k for petrochemico | die
Ma
are | ese fuels; petrol,
usel and kerosene.
uny useful materials
made by the
trochemical industry; | | | Why do we crack long chains? Without cracking, many of the long hydrocard wasted as there is not much demand for these shorter chains. | | | | | | | | | | sol | vents, lubricants and
lymers. | | | shorter chains. | AQA P5a Forces - the basics | |-----------------------------| | Combined Foundation | Required Practical for this topic: Hooke's Law | s and | Mass | How much matter something is made of | Measured in kilograms (kg) | |-------------------------|------------------------------|---|-------------------------------| | Gravity, mass
weight | Weight | The force acting on an object due to gravity | Measured in newtons (N) | | Gravi | Gravitational field strength | How much weight is experienced per kilogram of mass | On Earth, this is 9.8
N/kg | Weight = mass x gravitational field strength (W = m x g) | | Unit | For example: newton (N), kilogram (kg),
metre (m) | | | | | | |----------------|--|--|--------------------------------|--|--|--|--| | tions | kilo | For example: kilonewton (kN), kilogram (kg) | 1000 or 1x10 ³ | | | | | | nd definitions | Mega | For example: meganewton (MN) | 1,000,000 or 1x10 ⁶ | | | | | | and d | Velocity | Speed in a given direction | m/s | | | | | | Units a | Distance | How far | m | | | | | | ō | Displacement | Distance in a given direction | e.g. 5 metres east | | | | | | | Contro of mass - the single point through which the weight of an object acts | | | | | | | Centre of mass = the single point through which the weight of an object acts | scalars and vectors | Scalar | A quantity that only
has magnitude (size),
e.g. mass, time,
temperature, energy,
speed | |---------------------|--------|--| | Scalars | Vector | A quantity that has magnitude and direction, e.g. force. | Arrows can be used to show vectors: Length of the arrow = size of the vector Direction of the arrow = direction of the vector 10N | energy | | |----------|----------| | done and | transfer | | Work de | _ | Work done Work done = force x distance (W = Fs) velocity, momentum 1 joule of work is done when 1 newton of force moves an object 1 metre in the direction of the force If the force is at right angles to the direction of movement then no work is done If work is done against friction then the thermal energy store of the object will increase | | A force can be a push or a pull | Examples are stretch, squash and turn | |--------|---|---| | | Contact forces are exerted between two objects when they touch | E.g. friction, air resistance and tension | | Forces | Non-contact forces are exerted between two objects without touching | E.g. gravity, magnetism, electrostatic forces | | | Resultant force = the single force which has the san | ne effect as all the forces on an object | | | Two forces acting in the same direction | are added together | | | Two forces acting in opposite directions | are taken away | | A free body diagram shows the magnitude and direction of all the forces on an object | 10N 5N 1N | | | |--|-----------|--|--| | The object in the diagram would experience a force of 5N to the left. | | | | | city | Forces can | accelerate or deform an object | |--------------------------|--------------------------|---| | | Elastic deformation | An object has been stretched but can return to its original length | | | Inelastic deformation | An object is stretched and can't return to its original length | | elastic | Extension = | Current length – original length | | Forces and elasticity | Hooke's law | The extension is directly proportional to the force stretching an object | | Limit of proportionality | | The point at which a force-extension graph stops being a straight line and Hooke's law stops being true | | | Elastic potential energy | Energy stored in a stretched spring | | | Work done on a spring | Increases the elastic potential energy store and thermal energy store of the spring | | | Hooke's law: force = | spring constant x extension (F = k x e) | elastic potential energy = ½ x spring constant x extension² (E = ½ ke²) | AQA P5b Forces and motion
Combined Foundation | |--| | Combined Foundation | Required Practical for this topic: None | tion | Speed unit | Metres per second (m/s) | | | | |------------------------|---|---|--|--|--| | | Velocity | The vector form of speed. Speed in a given direction | | | | | celera | Acceleration | The rate of change of velocity | | | | | Deceleration | | A negative acceleration. Slowing down. | | | | | Speed and acceleration | Acceleration unit | Metres per second per second or metres per second squared (m/s/s or m/s²) | | | | | | For questions with two speeds | Use u for initial speed and v for final speed | | | | | | Distance = speed \times time (s = v \times t) | | | | | | | Acceleration = change in | n velocity \div time $(a = \Delta v \div t \text{ or } a = (v - u) \div t)$ | | | | | Motion graphs | Distance time graph for a stationary object | Horizontal line | |---------------|---|---------------------------------| | | Distance-time graph for an object at a steady speed | Straight line sloping upwards | | | Distance-time graph gradient | Equals the speed | | | Velocity-time graph for an object at a steady speed | Horizontal line | | | Velocity-time graph for an accelerating object | Straight line sloping upwards | | | Velocity-time graph for a decelerating object | Straight line sloping downwards | | | Velocity-time graph gradient | Equals the acceleration | | velocity | Terminal velocity | The maximum speed of a falling object | |-----------|------------------------------------|---| | minal vel | When an object accelerates | The force of air resistance increases | | Termi | Terminal velocity is achieved when | The forces of weight and air resistance balance |