Key points to learn		Key points to learn		Trilogy: Molecules and matter	
1. Mass, m	Amount of matter in something. Measured in kg	11. Melting point	Temperature when solid turns into liquid. Same as freezing point.	Collins rev guide: Particle model of matter Knowledge Organiser	
2. Volume, V	Amount of space something takes up. Measured in m ³	12. Boiling point	Temperature when liquid turns into gas. Same as condensation point.	0 0	
	Volume of h a cuboid = w x d x h	Condensation 13. point	Temperature when gas turns into liquid. Same as boiling point.	Energy and energy resources Particles at work	
	Volume of an irregular	14. Freezing point	Temperature when liquid turns into solid. Same as melting point.		
	object can be found by dropping in a liquid and measuring displacement.	15. Latent heat	Energy transferred when a substance changes state but temperature doesn't change	Conservation and dissipation of energy Electricity in the home	
3. Density,	Mass per unit volume. Measured in kg/m ³	16. Specific latent heat of fusion	Energy needed to melt 1kg of solid into liquid	by heating Energy Finergy Molecules and matter	
ρ	$density = \frac{mass}{volume}$	17. Specific latent heat of	Energy needed to boil 1kg of liquid into gas	resources Radioactivity	
4. Floating	An object that has a lower density than the fluid will float	vaporisation	Temperature and kinetic energy of	Background The particle model is widely used to predict the	
5. Sinking	An object that has a higher density than the fluid will sink	18. At state changes	particles stays constant. Internal energy increases due to an	behaviour of solids, liquids and gases. It helps us to design vehicles from submarines to	
⁶ Evaporation	Happens at any temperature		increase in potential energy as particles move further apart	spacecraft. It even explains why it is difficult to make a good cup of tea high up a mountain!	
7 Sublimation	Solid turns straight into gas			0 , 0 ,	
8. Solid	Particles held together in fixed positions by strong forces. Least energetic state of matter.	19. Heating and cooling	All gas All liquid All solid All solid All solid	$\frac{\text{Maths skills}}{\text{densit}}$ $\frac{mass}{Volume} \qquad \text{(You need to remember)}$	
9. Liquid	Particles move at random and are in contact with each other. More energy than solids, less than gas	curves	All solid time time	[kg/m³] $ \rho = \frac{m}{V} \frac{[kg]}{[m³]} this.) $	
10. Gas	Particles move randomly and are far apart. Weak forces of attraction. Most energetic.	20. Gas pressure	Caused by particles hitting surfaces. Increases when temperature increases	Latent heat: $Ener gy = massxspecifiate n$ teat $E = mxL \qquad (You are [J] [kg] [J/kg] \qquad given this)$	

Key points to learn		Key points to learn		Trilogy P6: Radioactivity	
1. Radioactive decay	Unstable nuclei emitting a type of radiation (α , β , γ or neutron)	8. Activity	Rate of unstable nuclei decay. Measured in Becquerel (Bq)	Collins rev guide: Atomic Structure	
2. Random event	You cannot predict or change when decay might happen.	9. Irradiated	Exposed to radiation but does not become radioactive.	Knowledge Organiser	
3. Ionising	The ability to charge atoms	10. Radioactive	Unwanted presence of radioactive material.	Big picture (Physics Paper 1)	
4. Alpha particle	Two neutrons and two protons. The same as a helium nucleus.	contamination 11 Geiger counter	Nuclear radiation detector.	Energy and energy resources Particles at work	
(α)	Stopped by paper or skin.		Time it takes for the radioactive nuclei to halve. Or, Half-life = 1s	Conservation and dissipation of energy Electric circuits Electricity in the home	
4/ ₂ He	Range of a couple of cm in air				
	Highly ionising: has charge of +2	12. Half-life	the time it	Energy transfer by heating Molecules and	
	Parent atom mass drops by 4 and atomic number drops by 2.		takes for the activity to halve.	Energy resources Radioactivity	
5. Beta particle	A high speed electron made when a neutron turns into a proton.	13. Nuclear model of the	Very small, radius of ≈1x10 ⁻¹⁰ m Most of mass in the nucleus.	Background	
(β)	Stopped by thin aluminium.	atom	Number of electrons = protons	Researched by Henri	
$_{-1}^{0}e$	Range of up to one metre.	14. Mass number	Number of neutrons + protons	Becquerel and Marie Curie	
	Mid ionising: has charge of -1.	15. Atomic number	Number of protons $\frac{4}{2}He$	around 1900 it remains mysterious and frightening. Radioactive Atom Particle	
	Parent atom mass remains same and atomic number rises by 1	16. Isotope	Same number of protons different number of neutrons.	Maths skills	
6. Gamma ray (γ) ογ	An electromagnetic wave.		Atom where number of protons is not equal to electrons (+'ve or – 've)	<u>Nuclear decay equations:</u> Balance top and bottom numbers on RHS and LHS.	
	Stopped by thick lead.	1 7. lon			
	Unlimited range.	18. Plum pudding	Early model: ball of positive charge	$^{226}_{88}$ Ra $\rightarrow {}^{4}_{2}$ He + $^{222}_{86}$ Rn	
	Low ionising: has no charge.	atom model	with electrons stuck in it.	• <u>Finding Half-life</u>	
	Parent atom mass and atomic number remains same.	19. Bohr Model	ldea that electrons have to be at certain distances from nucleus.	using a graph Find how long It takes until you have half	
7. Neutron (n)	Neutron ejected from the nucleus	20. Chadwick	Discovered neutrons	what you started with	

<u>k</u>	<u>Cey points to learn</u>	<u>Ke</u>	y points to learn	
1 Chemical reaction	Reactants → Products 'turn into'	12.	A more reactive metal will displace a less reactive metal from a chemical	
2 Oxidation	Losing electrons (or gaining oxygen)	Displacement reaction 13. Ion	compound Eg $CuCl_2 + Zn \rightarrow ZnCl_2 + Cu$ Cu + $Zn \rightarrow Cl$ Atom where number of protons is	
3 Reduction	Gaining electrons (or losing oxygen)			
4. OiL RiG	<u>O</u> xidation <u>i</u> s <u>L</u> oss of electrons <u>R</u> eduction <u>i</u> s <u>Gain</u> of electrons			
	List of metals with most reactive at top		not equal to electrons (+'ve or -'ve)	
5 Reactivity Series	and least reactive at bottom The most reactive metals are most likely to lose electrons	Neutralisation reaction	Acid + Alkali → Metal + Water salt	
6. Metals and oxygen	Metal + Oxygen → Metal Oxide Eg Iron + oxygen → iron oxide	15. pH scale	1 – Strong acid 7 – Neutral 14 – Strong alkali	
7. Metals	Metal + Water -> Metal + Hydrogen hydroxide	16. Universal indicator	Turns red in strong acidTurns green in neutralTurns purple in strong alkali	
and water	Sodium + Water → Sodium + Hydrogen	17. Acids	Contains H ⁺ ions. Opposite of a base	
	hydroxide Metal + Acid → Metal salt + hydrogen	18. Base	Usually contains OH ⁻ ions. Opposite of an acid	
8. Metals and acid	Eg Zinc + Hydrochloric → Zinc + Hydrogen	19. Alkali	A base that has dissolved in water	
9. Metal carbonates and acids	acid chloride Metal + Acid → Metal + Water + Carbon carbonate salt dioxide Eg	20. Test for hydrogen	Hydrogen makes a squeaky 'pop' when lit with a splint	
	Lead + Nitric → Lead + Water + Carbon carbonate acid nitrate dioxide	21. Test for carbon dioxide	If you bubble carbon dioxide	
10. Metal salts	 Hydrochloric acid makeschloride Sulfuric acid makessulfate Nitric acid makesnitrate 		through limewater it will turn milky (cloudy white) Clear → milky	
11. State symbols	(s) solid; (l) liquid; (g) gas; (aq) aqueous solution	22. Ionic equation	Ions making neutral product Eg Cu ²⁺ (aq) + 2OH ⁻ (aq) → Cu(OH) _{2 (s)}	

Trilogy C5: Chemical Changes

Collins rev guide: Chemical Changes

Knowledge Organiser

Big picture (Chemistry Paper 1)

Background

In the past, scientists would discover reactions by trial and error. This was time-consuming and dangerous. Today we can use patterns to predict the outcomes of a whole range of reactions. This has allowed us to develop new materials and understand reactions that happen inside all living things.

Additional information

You need to be able to work out how many electrons an atom wants to lose or gain using the periodic table group number. This will be its ion charge.

<u>Ke</u>	y points to learn	<u>Ke</u>	y points to learn	Trilogy C7: Energ
	One that transfers energy to the	3. Reactant	Used in a reaction	Collins rev guide: En
	surroundings so the temperature of the surroundings increases	4. Product	Made in a reaction	Knowledge C
	A+B Heat energy	5. Conservation of energy	Energy is never created or destroyed it is just transferred from one form to another	Atoms, molecules and moles
1. Exothermic reaction	energy released Reaction progress	6. Activation Energy	Is the energy required to start a reaction	Atomic structure The periodic table
	Used in handwarmers and self- heating cans	7. Catalyst	Chemical which speeds up a reaction without being used itself	Structure and bonding Chemical calculations
	Examples: combustion, respiration, oxidation, neutralisation		Reduces the activation energy required to start a reaction	
2. Endothermic reaction	One that absorbs energy from the surroundings so the temp. of	8. Breaking and making bonds	This is what happens during a chemical reaction	The interaction of particles often involves transfers of e produce heating or cooling in a range of everyday appliance. Maths s Using bond energies, car difference in a reaction.
	the surroundings decreases		Require energy in to break bonds (Endothermic)	
	Energy absorbed		Energy is released when bonds are made (Exothermic)	
			Bonds between different atoms need different amounts of energy	
	Reaction progress	Additional information Collision theory: chemical reactions occur when particles collide with enough energy Chemical reactions are all due to electrons moving or being shared An enzyme is a biological catalyst Higher Tier content is written in italics		$2H_2 + O_2 \rightarrow 2H_2O$ Reactants bond energy (kJ/mol)
	Used in cold packs for injuries			(2x436) + 498) = 1370 Products bond energy (kJ/mol) $2x(2x464) = 1856$ Energy released (kJ/mol) $1370-1856 = -486$ kJ/mol Therefore exothermic
	Examples: Photosynthesis, thermal decomposition, citric acid and sodium hydrogen carbonate			

rgy Changes

nergy Changes

Organiser

Chemistry Paper 1)

und

in chemical reactions energy. These effects that are used lications.

<u>skills</u>

alculate energy eg

Bond	Bond energy (kJ/mol)
H-H	436
0=0	498
H-O	464