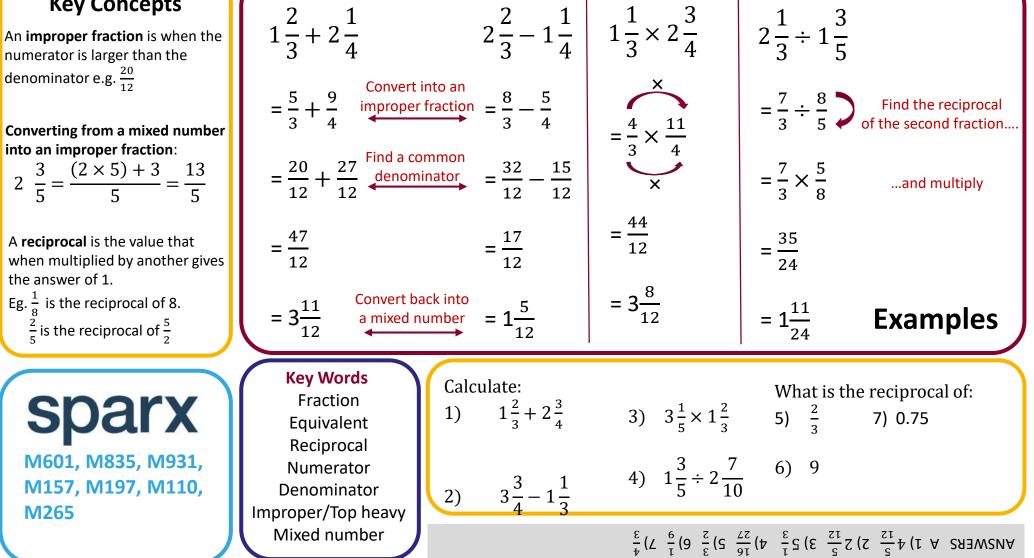

INTEGERS, ROUNDING AND PLACE VALUE

Key Concepts	Examples		
Digits are the individual components of a number.	Order the following numbers starting with Round 3.527 to: the smallest:		
Integers are whole numbers.	a) 1 decimal place 1) 5, -3, 4, 7, -2 -3, -2, 4, 5, 7 a) 1 decimal place 3 . 5 $\begin{array}{r} 2 \\ 7 \end{array} \rightarrow 3.5$		
Rounding rules:	b) 2 decimal places		
A value of 5 to 9 rounds the number up. A value of 0 to 4 keeps the	2) 0.067 0.6 0.56 0.65 0.605 $3.527 \rightarrow 3.53$ Rewrite 0.067, 0.600, 0.560, 0.650, 0.605		
number the same.	0.067 0.56 0.6 0.605 0.65 c) 1 significant figure 3 5 2 7 → 4		
sparx	Key WordsA) Order the following numbers starting with the smallest:IntegerEven1)6, -2, 0, -5, 32)0.72, 0.7, 0.072, 0.07, 0.702		
M696	DigitB)Round the following numbers to the given degree of accuracyDecimal place1)14. 1732(1 d.p.)2) 0.0568(2 d.p.)3)3418(1 S.F)		
M365	Significant figures 000 (2 2.47 (18 2.5, 0, 3, 6 2) 0.02, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.702, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7		

FRACTIONS, DECIMALS AND PERCENTAGES



FRACTIONS

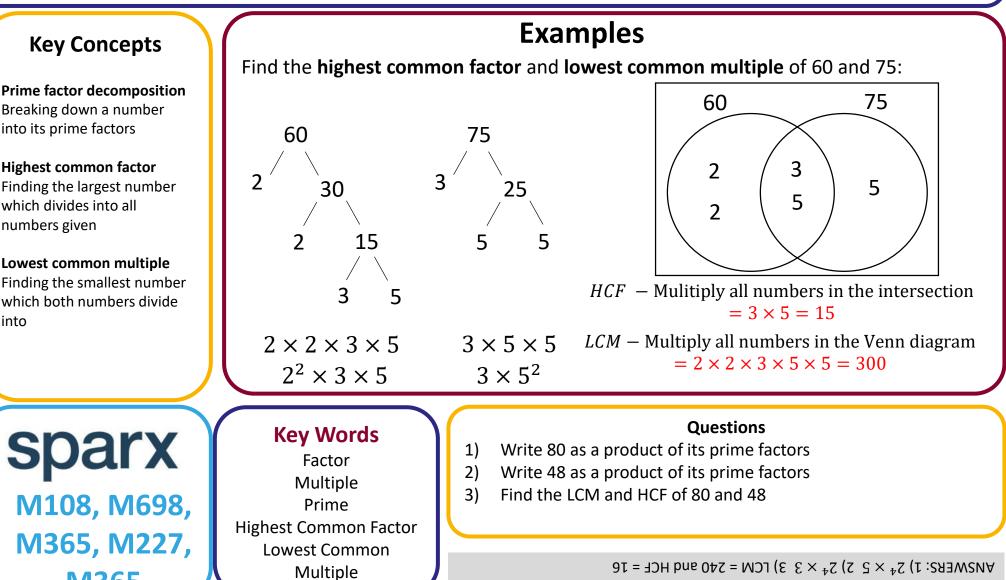
4 OPERATIONS WITH FRACTIONS

Key Concepts

STANDARD FORM

Examples **Key Concepts** Calculate the following, write your answer in **standard** Write the following in We use standard form: standard form: form to write a very large or a very small 1) $3000 = 3 \times 10^3$ 1) $(3 \times 10^3) \times (5 \times 10^2)$ number in scientific form. Must be $\times 10$ 2) $4580000 = 4.58 \times 10^{6}$ *b* is an integer 3) $0.0006 = 6 \times 10^{-4}$ 2) $(8 \times 10^7) \div (16 \times 10^3)$ $a \times 10^{b}$ 4) $0.00845 = 8.45 \times 10^{-3}$ $8 \div 16 = 0.5$ - 0.5×10^4 $10^7 \div 10^3 = 10^4$ = 5 × 10³ Must be $1 \le a < 10$ A) Write the following in standard form: **Key Words** sparx 74 000 2) 1 042 000 3) 0.009 4) 0.000 001 24 1) Standard form Work out: B) Base 10 1) $(5 \times 10^2) \times (2 \times 10^5)$ 2) $(4 \times 10^3) \times (3 \times 10^8)$ **M719** 3) $(8 \times 10^6) \div (2 \times 10^5)$ 4) $(4.8 \times 10^2) \div (3 \times 10^4)$ **M678** Links B1) 1 × 10⁸ 2) 1.2 × 10¹² 3) 4 × 10 4) 1.6 × 10⁻² Science M757 ANSWERS: A1) 7.4 × 10⁴ 2) 1.042 × 10⁶ 3) 9 × 10⁻⁵ 4) 1.24 × 10⁻⁶

FACTORS, MULTIPLES AND PRIMES


Key Concepts

Prime factor decomposition Breaking down a number into its prime factors

Highest common factor Finding the largest number which divides into all numbers given

Lowest common multiple Finding the smallest number which both numbers divide into

M365

PERCENTAGES

Key Concepts	Calculating a percentage – non calculator:	Percentage change: Examples
Calculating percentages of an amount without a calculator:	Calculate 32% of 500g:	A dress is reduced in price by 35% from £80. What is it's new price ?
10% = divide the value by 10 1% = divide the value by 100 Calculating percentages of an amount with a calculator:	$10\% \longrightarrow 500 \div 10 = 50$ $30\% \longrightarrow 50 \times 3 = 150$ $1\% \longrightarrow 500 \div 100 = 5$ $2\% \longrightarrow 5 \times 2 = 10$ 32% = 150 + 10 = 160g	Value $\times (1 - percentage as a decimal)$ = 80 $\times (1 - 0.35)$ = £52
Amount × percentage as a decimal	Calculating a percentage – calculator: Calculate 32% of 500g:	A house price appreciates by 8% in a year. It originally costs £120,000, what is the new value of the house?
Calculating percentage increase/decrease: Amount × (1 ± percentage as a decimal)	Value × (percentage ÷ 100) = 500 × 0.32 = 160g	Value \times (1 + percentage as a decimal) = 120,000 \times (1 + 0.08) = £129,600
Sparx M433, M905, M476, M533	Key WordsPercentIncrease/decreaseAppreciateDepreciateMultiplierDivide	2 6% 24%

PERCENTAGES AND INTEREST

Examples Key Concepts Simple interest: **Compound interest:** Calculating percentages of an amount without a calculator: Joe invest £400 into a bank account that Joe invest £400 into a bank account that pays 3% pays 3% simple interest per annum. compound interest per annum. 10% = divide the value by 10 Calculate how much money will be in the Calculate how much money will be in the bank 1% = divide the value by 100 bank account after 4 years. account after 4 years. **Per annum** is often used in monetary questions meaning per $3\% = £4 \times 3$ *Value* \times (1 ± *percentage as a decimal*)^{*years*} year. = £12 $=400 \times (1+0.03)^4$ 4 years = $\pm 12 \times 4$ $=400 \times (1.03)^4$ Depreciation means that the Interest = £48 $= \pm 450.20$ value of something is going down Total in bank account = $\pounds400 + \pounds48$ or reducing. = £448**Key Words** Calculate a) 32% of 48 b) 18% of 26 1) Percent sparx 2) Kane invests £350 into a bank account that pays out simple interest of Depreciate 6%. How much will be in the bank account after 3 years? Interest Jane invests £670 into a bank account that pays out 4% compound 3) M901 Annum interest per annum. How much will be in the bank account after 2 Simple years? Compound Multiplier 73.4273 (E E143 (2 83.4 (d 35.21 (b1 A 283W2NA

COMPOUND INTEREST AND DEPRECIATION

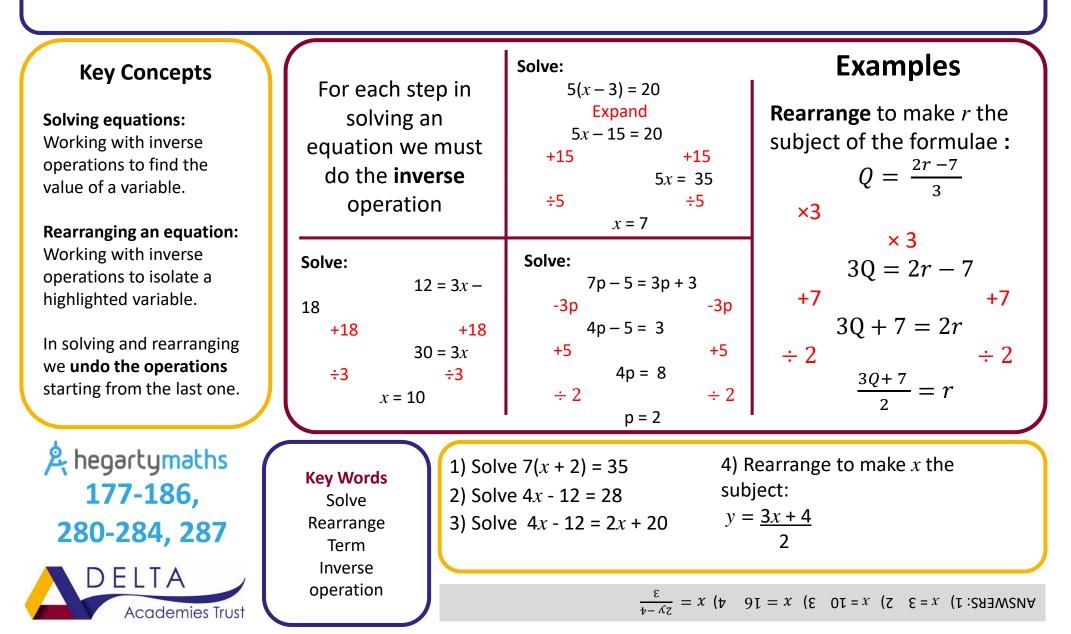
Key Concepts	Examples	
We use multipliers to increase and decrease an amount by a particular percentage.	Compound interest:	Compound depreciation:
 Percentage increase: Value × (1 + percentage as a decimal) Percentage decrease: Value × (1 - percentage as a decimal) Appreciation means that the value of something is going up or increasing. Depreciation means that the value of something is going down or reducing. Per annum is often used in monetary questions meaning per year. 	Joe invest £400 into a bank account that pays 3% compound interest per annum. Calculate how much money will be in the bank account after 4 years. <i>Value</i> $\times (1 + percentage as a decimal)^{years}$ = 400 $\times (1 + 0.03)^4$ = 400 $\times (1.03)^4$ = £450.20	Value $\times (1 - percentage as a decimal)^{years}$ = 5000 $\times (1 - 0.075)^3$
Sparx Per U773, U533, Dep U332, U988 Con	ercent interest per annum. H preciate years? preciate 2) A house has decrease	to a bank account that pays out 4% compound How much will be in the bank account after 2 ed in value by 3% for the past 4 years. If originally 0, how much is it worth now?

EXPRESSIONS/EQUATIONS/IDENTITIES AND SUBSTITUTION

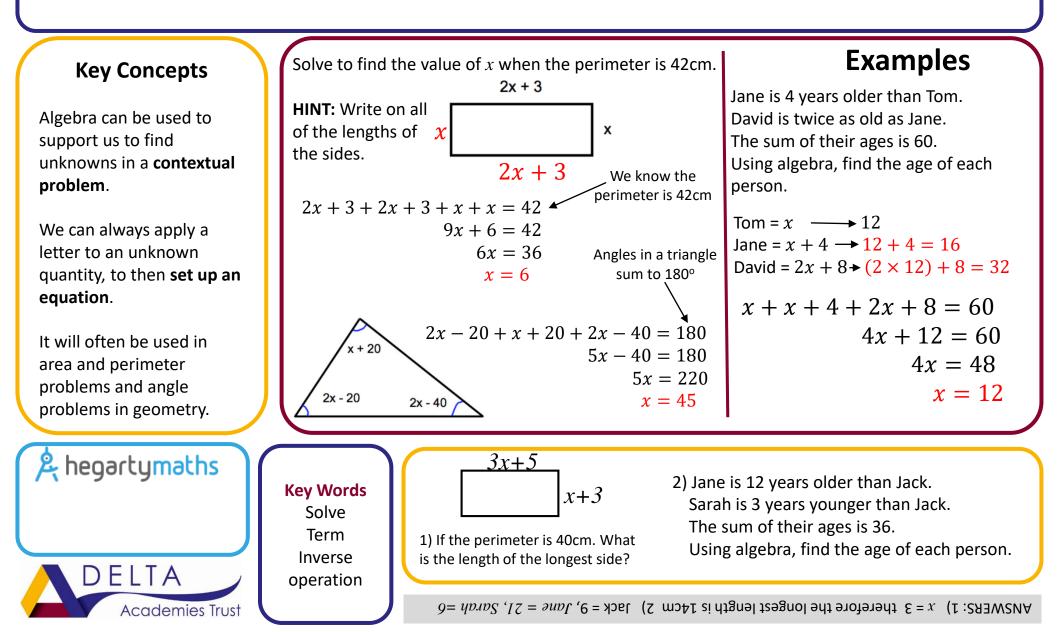
Key Concepts

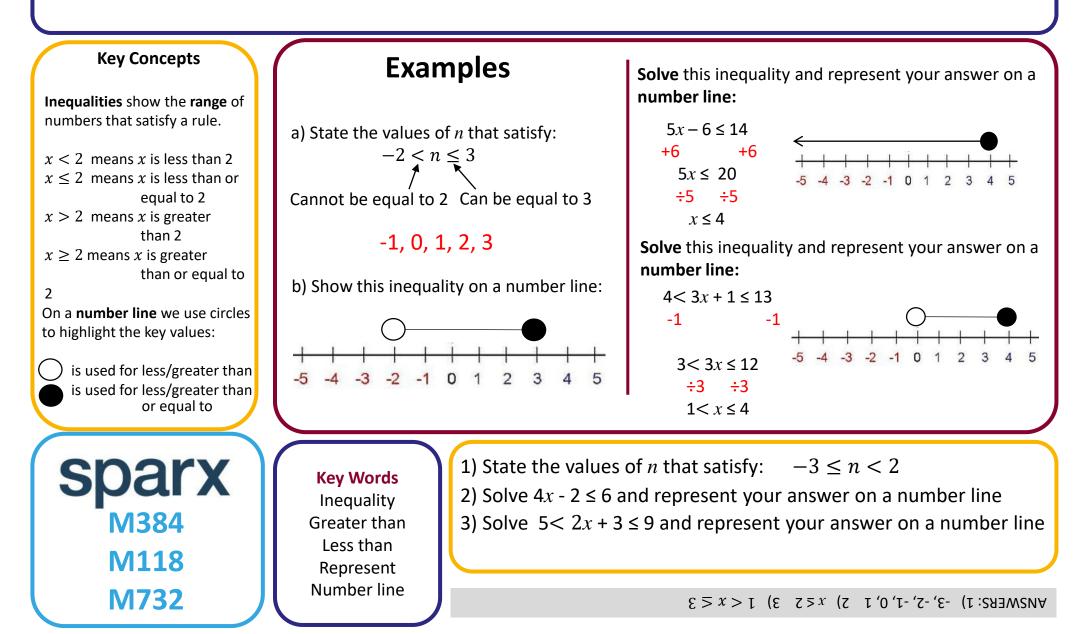
A **formula** involves two or more letters, where one letter equals an **expression** of other letters.

An **expression** is a sentence in algebra that does NOT have an equals sign.


An **identity** is where one side is the equivalent to the other side.

When **substituting** a number into an expression, replace the letter with the given value.


Sparx M813, M830, M208, M979 Key Words Substitute Equation Formula Identity Expression


REARRANGE AND SOLVE EQUATIONS

EQUATIONS IN CONTEXT

INEQUALITIES

