
Key points to learn		Key points to learn	
1. Energy stores [J]	Chemical energy	9. Work done [J]	Equal to the energy transferred.
	Kinetic energy		When a force moves an object.
	Gravitational potential energy		Work done = Force x distance moved W = F x s [J] [N] [m]
	Elastic potential energy		
2. Chemical energy [J]	Transferred during chemical reactions eg fuels, foods, or in batteries	10. Energy flow diagram	Show energy transfers eg for a torch lamp:
	All moving objects have it.		Chemical → Light + Heat
3. Kinetic energy [J]	k.e = 0.5 x mass x (speed) ² $E_k = \frac{1}{2} \times m \times v^2$ [J] [kg] [m/s]	11. Conservation of energy	Energy cannot be created or destroyed. It can only be transferred usefully, stored or dissipated.
⁴ Gravitational potential energy [J]	Stored in an object lifted up.	12. Dissipated energy [J]	Wasted energy, usually spread to the surroundings as heat.
	g.p.e = mass x g x height E _p = m x g x h [J] [kg] [N/kg] [m]		The extension of a spring is proportional to the force on it.
	Energy stored in a springy object	13. Hooke's Law and k the	The gradient of this graph is known as k, the spring constant.
5. Elastic potential energy [J]	e.p.e = 0.5 x spring x (extension) ² constant E _e = ½ x k x e ² given this [J] [N/m] [m] equation)	spring constant	
6. Energy can be transferred	Heating (thermal energy always flows from hot to cold objects)	14. Efficiency	Proportion of input energy transferred to useful energy. 100% means no wasted energy. Efficiency = useful ÷ total input energy energy
	An electrical current flowing	14. Efficiency	
by	A force moving an object		
7. Useful energy [J]	Energy transferred to the place and in the form we need it.	15. Power [W]	Energy [J] transferred in 1 second.
			Power [W] = Energy [J] ÷ time [s]
8. Wasted energy [J]	Not useful. Eventually transferred to surroundings	16. Wasted power [W]	Total power in – useful power out

Trilogy P1: Conservation and dissipation of energy

Collins revision guide: Energy

Knowledge Organiser

Big picture (Physics Paper 1)

Background

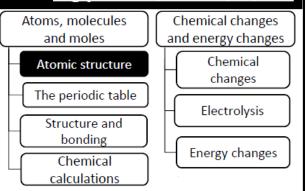
Energy is the capacity of something to make something happen.

The Universe and everything in it is constantly changing energy from one form into another.

Maths skills

You should be able to recall, use and rearrange all the equations on this page except number 5. g is Earth's acceleration due to gravity. It has a constant value of approximately 9.8m/s²
You need to remember the units for each quantity. They are in [] next to equations.

You should be able to calculate the gradient of a Force – extension graph.


	Key points to learn	Key points to learn	
1. Atom	Smallest part of an element that can exist	10. Mixture	Two or more chemicals not chemically bonded
	Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen		Used to separate mixtures. Ones you need to know:
2. Molecule	Two or more atoms chemically bonded		Filtration - get an insoluble solid from a liquid Crystallisation - get a soluble solid from a liquid by evaporating liquid off Distillation - get a pure liquid from a mixture of liquids
	Hydrogen molecule (H ₂) (H) Water molecule (H ₂ O)	11. Separation techniques	
3. Element	Only one type or atom present. Can be single atoms or molecules		
	Both examples of the (N ₂) N=N Nitrogen element (N)		Chromatography - separate mixtures of coloured compounds
4. Compound	Two or more different elements chemically bonded	12. Electron energy levels	Where electrons are found. The shells can each hold this
	Carbon dioxide (CH ₄)		many electrons maximum: 2,8,8
5. Nuclear atom model	• Electrons orbit • Protons and neutrons in nucleus • Number of protons = electrons	13. Periodic Table	A list of all the elements in order or atomic number. Columns called Groups . Rows called Periods
		14.Conservation of mass	In a chemical reaction the total mass of reactants = total mass of products
		15. Mass number	Number of 6 Neutrons + 5 Protons neutrons + protons \hookrightarrow 11 p
6. Nucleus	The centre of the atom. Contains neutrons and protons	16. Atomic number	Number of protons 5^{D}
7. Proton	Charge of +1. Mass of 1. Found inside the nucleus	17. Isotope	Same number of protons different number of neutrons
8. Neutron	Charge of 0. Mass of 1. Found inside the nucleus	18. lon	Atom where number of protons is not equal to electrons (+'ve or -'ve)
9. Electron	Charge of -1. Mass of almost 0. Found orbiting around the nucleus	Plum pudding 19 atom model	Early model: ball of positive charge with electrons in it

Trilogy C1: Atomic structure

Collins revision guide: Atomic structure and the periodic table

Knowledge Organiser

Big picture (Chemistry Paper 1)

Background

Atoms are the building blocks of us, our world and our universe. Everything that we can touch is made of atoms.

The Periodic Table organises them into a way that helps us make sense of the physical world.

Even though they make everything atoms are mostly (99.9%) empty space. If an atom was as big as Wembley, the nucleus would be pea-sized.

Additional information

A great deal of this topic is also covered in your Paper 1, Physics lessons during Electricity and Radioactivity.

Key points to learn		Key points to learn		Trilogy C2: The Periodic Table		
1. Chemical symbol	An abbreviated name for every element. Maximum of two letters always starts with a capital letter	10. Non- metals 11. Group 0 Noble gases	Decome (negative - ve) ions	Collins revision guide: Atomic structure and the periodic table Knowledge Organiser		
2 Reactivity	How easily an element will react					
3. Group	Columns in the Periodic Table. Elements in the same group have similar properties		He, Ne, Ar, Kr, Xe, Rn	Atoms, molecules and moles Chemical changes and energy changes		
3. C. Gup	Tells you how many electrons that atom has in its outer shell		Unreactive: full outer shell	Atomic structure Chemical changes		
	Rows in the periodic table		Boiling point increases as you go down the group	The periodic table Electrolysis		
4. Period	Tells you how many electron	12. Group 1 Alkali metals	Li, Na, K, Rb, Cs, Fr	Structure and bonding		
5. Mass	shells that atom has Number of 4 Neutrons + 3 Protons		12. Group 1 —	Very reactive: only one electron in their outer shell	Chemical calculations	
number 6. Atomic	Number of protons 3 Protons			Reactivity increases as you go down the group	Background	
number					React with oxygen to give metal oxides eg MgO	The periodic table is amazing because it allows
7. Ion	Atom where number of protons is not equal to electrons (+'ve or -'ve)			React with water to give metal hydroxide (alkali) and hydrogen eg MgOH	us to predict and explain the properties of elements even before they are discovered.	
8. Mendeleev	Scientist who placed elements in order of atomic weight but left		React with chlorine to give metal	<u>Maths skills</u>		
iviendeleev	gaps for undiscovered elements		chloride eg MgCl F, Cl, Br, I	Losing –'ve charge makes you more +'ve. Gaining –'ve charge makes you more –'ve.		
9. Metals	Have delocalised (free) electrons that can move Atoms lose electrons and become	13. Group 7 Halogens	Melting and boiling point increase			
			as you go down group	Additional information		
	positive (+'ve) ions Metals		Reactivity decreases as you go down the group	Remember Electron each hold this		
			A more reactive halogen will displace a less reactive one	energy levels many electrons maximum: 2,8,8		