| Key points to learn | | Key points to learn | | |--|---|----------------------------------|--| | 1. Energy
stores
[J] | Chemical energy | 9. Work
done [J] | Equal to the energy transferred. | | | Kinetic energy | | When a force moves an object. | | | Gravitational potential energy | | Work done = Force x distance moved W = F x s [J] [N] [m] | | | Elastic potential energy | | | | 2. Chemical energy [J] | Transferred during chemical reactions eg fuels, foods, or in batteries | 10. Energy
flow diagram | Show energy transfers eg for a torch lamp: | | | All moving objects have it. | | Chemical → Light + Heat | | 3. Kinetic
energy
[J] | k.e = 0.5 x mass x (speed) ²
$E_k = \frac{1}{2} \times m \times v^2$
[J] [kg] [m/s] | 11.
Conservation
of energy | Energy cannot be created or destroyed. It can only be transferred usefully, stored or dissipated. | | ⁴ Gravitational
potential
energy
[J] | Stored in an object lifted up. | 12. Dissipated energy [J] | Wasted energy, usually spread to the surroundings as heat. | | | g.p.e = mass x g x height
E _p = m x g x h
[J] [kg] [N/kg] [m] | | The extension of a spring is proportional to the force on it. | | | Energy stored in a springy object | 13. Hooke's
Law and k the | The gradient of this graph is known as k, the spring constant. | | 5. Elastic
potential
energy
[J] | e.p.e = 0.5 x spring x (extension) ² constant E _e = ½ x k x e ² given this [J] [N/m] [m] equation) | spring
constant | | | 6. Energy can
be
transferred | Heating (thermal energy always flows from hot to cold objects) | 14. Efficiency | Proportion of input energy transferred to useful energy. 100% means no wasted energy. Efficiency = useful ÷ total input energy energy | | | An electrical current flowing | 14. Efficiency | | | by | A force moving an object | | | | 7. Useful
energy [J] | Energy transferred to the place and in the form we need it. | 15. Power
[W] | Energy [J] transferred in 1 second. | | | | | Power [W] = Energy [J] ÷ time [s] | | 8. Wasted energy [J] | Not useful. Eventually transferred to surroundings | 16. Wasted power [W] | Total power in – useful power out | # Trilogy P1: Conservation and dissipation of energy Collins revision guide: Energy # Knowledge Organiser Big picture (Physics Paper 1) # **Background** Energy is the capacity of something to make something happen. The Universe and everything in it is constantly changing energy from one form into another. ## **Maths skills** You should be able to recall, use and rearrange all the equations on this page except number 5. g is Earth's acceleration due to gravity. It has a constant value of approximately 9.8m/s² You need to remember the units for each quantity. They are in [] next to equations. You should be able to calculate the gradient of a Force – extension graph. | | Key points to learn | Key points to learn | | |-----------------------------|---|---------------------------------|--| | 1. Atom | Smallest part of an element that can exist | 10. Mixture | Two or more chemicals not chemically bonded | | | Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen | | Used to separate mixtures. Ones you need to know: | | 2.
Molecule | Two or more atoms chemically bonded | | Filtration - get an insoluble solid from
a liquid
Crystallisation - get a soluble solid
from a liquid by evaporating liquid
off
Distillation - get a pure liquid from a
mixture of liquids | | | Hydrogen molecule (H ₂) (H) Water molecule (H ₂ O) | 11.
Separation
techniques | | | 3. Element | Only one type or atom present. Can be single atoms or molecules | | | | | Both examples of the (N ₂) N=N Nitrogen element (N) | | Chromatography - separate mixtures of coloured compounds | | 4.
Compound | Two or more different elements chemically bonded | 12. Electron
energy levels | Where electrons are found. The shells can each hold this | | | Carbon dioxide (CH ₄) | | many electrons
maximum: 2,8,8 | | 5. Nuclear
atom
model | • Electrons orbit • Protons and neutrons in nucleus • Number of protons = electrons | 13. Periodic
Table | A list of all the elements in order or
atomic number. Columns called
Groups . Rows called Periods | | | | 14.Conservation of mass | In a chemical reaction the total mass of reactants = total mass of products | | | | 15. Mass
number | Number of 6 Neutrons + 5 Protons neutrons + protons \hookrightarrow 11 p | | 6. Nucleus | The centre of the atom. Contains neutrons and protons | 16. Atomic
number | Number of protons 5^{D} | | 7. Proton | Charge of +1. Mass of 1. Found inside the nucleus | 17. Isotope | Same number of protons different number of neutrons | | 8. Neutron | Charge of 0. Mass of 1. Found inside the nucleus | 18. lon | Atom where number of protons is not equal to electrons (+'ve or -'ve) | | 9. Electron | Charge of -1. Mass of almost 0. Found orbiting around the nucleus | Plum pudding
19 atom model | Early model: ball of positive charge with electrons in it | # Trilogy C1: Atomic structure Collins revision guide: Atomic structure and the periodic table # **Knowledge Organiser** ## Big picture (Chemistry Paper 1) #### **Background** Atoms are the building blocks of us, our world and our universe. Everything that we can touch is made of atoms. The Periodic Table organises them into a way that helps us make sense of the physical world. Even though they make everything atoms are mostly (99.9%) empty space. If an atom was as big as Wembley, the nucleus would be pea-sized. ## **Additional information** A great deal of this topic is also covered in your Paper 1, Physics lessons during Electricity and Radioactivity. | Key points to learn | | Key points to learn | | Trilogy C2: The Periodic Table | | | |---------------------|---|--|---|--|---|---| | 1. Chemical symbol | An abbreviated name for every element. Maximum of two letters always starts with a capital letter | 10. Non-
metals 11. Group 0 Noble gases | Decome (negative - ve) ions | Collins revision guide: Atomic structure and the periodic table
Knowledge Organiser | | | | 2 Reactivity | How easily an element will react | | | | | | | 3. Group | Columns in the Periodic Table. Elements in the same group have similar properties | | He, Ne, Ar, Kr, Xe, Rn | Atoms, molecules and moles Chemical changes and energy changes | | | | 3. C. Gup | Tells you how many electrons that atom has in its outer shell | | Unreactive: full outer shell | Atomic structure Chemical changes | | | | | Rows in the periodic table | | Boiling point increases as you go down the group | The periodic table Electrolysis | | | | 4. Period | Tells you how many electron | 12. Group 1 Alkali metals | Li, Na, K, Rb, Cs, Fr | Structure and bonding | | | | 5. Mass | shells that atom has Number of 4 Neutrons + 3 Protons | | 12. Group 1 — | Very reactive: only one electron in their outer shell | Chemical calculations | | | number
6. Atomic | Number of protons 3 Protons | | | Reactivity increases as you go down the group | Background | | | number | | | | | React with oxygen to give metal oxides eg MgO | The periodic table is amazing because it allows | | 7. Ion | Atom where number of protons is not equal to electrons (+'ve or -'ve) | | | React with water to give metal
hydroxide (alkali) and hydrogen
eg MgOH | us to predict and explain the properties of elements even before they are discovered. | | | 8.
Mendeleev | Scientist who placed elements in
order of atomic weight but left | | React with chlorine to give metal | <u>Maths skills</u> | | | | iviendeleev | gaps for undiscovered elements | | chloride eg MgCl
F, Cl, Br, I | Losing –'ve charge makes you more +'ve. Gaining –'ve charge makes you more –'ve. | | | | 9. Metals | Have delocalised (free) electrons that can move Atoms lose electrons and become | 13. Group 7
Halogens | Melting and boiling point increase | | | | | | | | as you go down group | Additional information | | | | | positive (+'ve) ions Metals | | Reactivity decreases as you go down the group | Remember Electron each hold this | | | | | | | A more reactive halogen will displace a less reactive one | energy levels many electrons maximum: 2,8,8 | | |