Lab Safety Follow the instructions given by your teacher Be aware of your surroundings – take care - no running or 'horse play'. Hang up coats and bags, keep walking areas free. Stand up during practical tasks. Wear eye protection! ## Cells All living things are made up of cells Most cells are so small that you can only see them with a microscope. Both animal and plant cells have these components: **Cell membrane** – this surrounds the cell and allows nutrients to enter and waste to leave **Nucleus** – this controls what happens in the cell. It contains DNA, the genetic information that cells need to grow and reproduce. **Cytoplasm** – this is a jelly-like substance where chemical reactions happen. **Mitochondria** –These are structures where respiration takes place. ## **Specialised Cells** Specialised cells have a **specific role** to perform. Each specialised cell has a different job to do. They have **special features** that allow them to do these jobs. Red blood cells carry oxygen around the body. Nerve cells transmit electrical signals. Sperm cells are the male sex cells. Egg cells are the female sex cells. Root hair cells are plant cells. They take water into the root of a plant. ## Animal and Plant cells Microscopes are used to allow us to look at very small objects in greater detail than the human eye can see. To use a **microscope**, follow the steps below: - 1. Use the lowest magnification lens first. - 2. Angle the mirror to let in plenty of light through the microscope. - 3. Place the slide you want to look at on the stage. - 4. Turn the focusing wheel until you can see your slide clearly. **Total magnification** can be calculated using the following equation: Total magnification = eyepiece lens x objective lens To calculate the **magnification** of a biological specimen, use the following equation: $$magnification = \frac{measured\ size}{actual\ size}$$ | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 0 | | |-------------------------------|-----------------------------|------------------------------------|-------------------------------------|-----------------------------|----------------------------------|-------------------------------|-------------------------------|----------------------------------|---------------------------|-----------------------------------|------------------|---|------------------|---------------------|--------------------|----------------------------|------------------------|--| | | | | | Key | | | 1
H
hydrogen
1 | | | | | | | | | | 4
He
helium
2 | | | 7
Li | 9
Be | relative atomic mass atomic symbol | | | | | | | | | | 11
B | 12
C | 14
N
nitrogen | 16
O
oxygen | 19
F
fluorine | 20
Ne | | | 3 | 4 | | atomic | |) numbe | r | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | | 23
Na | 24
Mg | | | | | _ | | | | | | 27
Al | 28
Si | 31
P | 32
S | 35.5
CI | 40
A r | | | sodium
11 | magnesium
12 | | | | | | | | | | | aluminium
13 | silicon
14 | phosphorus
15 | sulfur
16 | chlorine
17 | argon
18 | | | 39
K | 40
Ca | 45
Sc | 48
Ti | 51
V | 52
Cr | 55
Mn | 56
Fe | 59
Co | 59
Ni | 63.5
Cu | 65
Zn | 70
Ga | 73
Ge | 75
As | 79
Se | 80
Br | 84
Kr | | | potassium
19 | calcium
20 | scandium 21 | titanium
22 | vanadium 23 | chromium 24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic 33 | selenium
34 | bromine
35 | krypton
36 | | | 85
Rb | 88
Sr | 89
Y | 91
Zr | 93
Nb | 96
Mo | [98]
Tc | 101
Ru | 103
Rh | 106
Pd | 108
Ag | 112
Cd | 115
In | 119
Sn | 122
Sb | 128
Te | 127
 | 131
Xe | | | rubidium
37 | strontium
38 | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium 43 | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | tin
50 | antimony
51 | tellurium
52 | iodine
53 | xenon
54 | | | 133
Cs | 137
Ba | 139
La * | 178
Hf | 181
Ta | 184
W | 186
Re | 190
Os | 192
Ir | 195
Pt | 197
Au | 201
Hg | 204
TI | 207
Pb | 209
Bi | [209]
Po | [210]
At | [222]
Rn | | | caesium
55 | barium
56 | lanthanum
57 | hafnium
72 | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | gold
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | | [223]
Fr
francium
87 | [226]
Ra
radium
88 | [227]
Ac*
actinium
89 | [261]
Rf
rutherfordium
104 | [262] Db dubnium 105 | [266]
Sg
seaborgium
106 | [264]
Bh
bohrium
107 | [277]
Hs
hassium
108 | [268]
Mt
meitnerium
109 | [271] Ds darmstadtium 110 | [272]
Rg
roentgenium
111 | Eleme | Elements with atomic numbers 112 – 116 have been reported but not fully authenticated | | | | | | | ^{*} The Lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted. Relative atomic masses for **Cu** and **Cl** have not been rounded to the nearest whole number.